Journal of Organometallic Chemistry, 72 (1974) 87-92 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

THE EFFECT OF THE SOLVENT UPON THE RATES AND MECHANISMS OF ORGANOMETALLIC REACTIONS

VII. A ¹⁹F NMR STUDY OF COMPLEXATION OF CF₃ HgX (X = Cl, I, OCOCF₃)

V.S. PETROSYAN, V.I. BAKHMUTOV and O.A. REUTOV

Chemistry Department, M.V. Lomonosov State University, Moscow B-234 (U.S.S.R.) (Received November 26th, 1973)

Summary

The concentration and temperature dependence of $J(^{199}Hg-C^{-19}F)$ for solutions of CF_3HgX (X = Cl, I, OCOCF₃) in various solvents shows that in inert solvents these molecules exist mainly as non-solvated dimers $(X = I \text{ or } OCOCF_3)$ or as monomers $(X = Cl)$. In strongly coordinated solvents $1/2$ complexes are largely formed from CF₃HgX and the electron-donating solvent molecules. In pyridine solutions an equilibrium exists between the 1/1 and 1/2 complexes. Complexes of the type $CF_3HgX \cdot D$ are T-shaped and have a higher relative content of s-electrons in the Hg-C-F group compared with tetrahedral $CF₃HgX \cdot 2D$ complexes.

Introduction

In compliance with the conclusions of the first paper of this series $[1]$ we have studied the effect of solvents upon the rates and mechanism of the reaction (1). Some of the kinetic data for this reaction in various solvents have already $Bz_2Hg + CF_3HgX \xrightarrow{Solvent} BzHgCF_3 + BzHgX$ (1)

(where
$$
X = \text{Cl}, I, \text{COOCF}_3
$$
 [2].)

been presented [3] and more detail will be given in a later paper. The behaviour of dibenzylmercury in various solvents has been studied by means of PMR spectroscopy $[4]$. In the present work we have applied ¹⁹F NMR spectroscopy to $CF₃HgX (X = CI, I, OCOCF₃)$ molecules in the same solvents.

Results and discussions

Recently [5], the spin-spin coupling constants $J(^{199}He-C^{-19}F)$ were analysed for compounds of the type CF₃HgX and from there it was concluded that increase of electron-withdrawing power of X led to an increase of the relative content of s-electrons in Hg-C bonds, and an increase of p-electrons in Hg-X bonds. In particular it has been shown in the present work that for such molecules $J(^{199}Hg-C^{-19}F)$ increases in the series $I < Cl < OCOCF_3$. These changes of $J(^{199}He-C^{-19}F)$ are analogous to the respective changes of $J(^{199}He-C^{-1}H)$ for similar CH₃HgX molecules. We therefore concluded that the regularities of changes in $J(^{199}Hg-C^{-1}H)$ and $J(^{199}Hg-C^{-19}F)$ for RHgX molecules when X is altered are similar and are applicable to a study of complexation of such molecules.

It was shown primarily that for fused $CF_3HgOCOCF_3$ and $CF_3HgCl J(^{199}He C^{-19}$ F) values are considerably higher than for their solutions and are 2268 and 2034 Hz respectively. Unfortunately it was not possible to carry out the experiment with $CF₃HgI$, owing to the volatility and instability of this compound $[6]$. Decreasing the temperature of the fused compound to an increase of $J(^{199}He$ $C^{-19}F$), so we conclude that for monomeric $CF₃HgX$ molecules these constants are lower than for associated $(CF₃HgX)_n$ molecules. Bearing in mind that in crystals RHgX molecules are associated through $X \cdot \cdot \cdot$ Hg bridging bonds [7] one may assume that intermolecular coordination of electron-donating atoms (oxygen in $CF₃HgOCOCF₃$ or halogen in $CF₃HgHal$) leads to an increase of $J(^{199}He-C^{-19}F)$ values. On the other hand, the rupture of these intermolecular coordination bonds on dilution by an inert solvent decreases these spin-spin coupling constants; a feature which was observed for the compounds under investigation on going from the melts to solutions in tetrachloroethylene, methylene chloride and benzene (Tables 1-3). It is important to note that even in strongly coordinated solvents such as dimethyl sulphoxide (DMSO), dimethylformamide (DMF), tetrahydrofuran (THF), pyridine and acetone $J(^{199}He-C ^{19}$ F) values are considerably lower than in the melts. Our data suggest that in inert solvents an important equilibrium exists between the associated and monomeric molecules of $CF₃HgX$ (eqn. 2). In strongly coordinated solvents there are various

$$
(CF3HgX)n = nCF3HgX
$$

38.

 (2)

equilibria between associated molecules, monomers, and $1/1$ and $1/2$ complexes of CF₃HgX with the solvents [8-10]. Therefore, the $J(^{199}He-C^{-19}F)$ constant observed for a solution of a given concentration at a given temperature could be presented in the form (3) .

$$
J_{obs} = p(A) \cdot J(A) + p(A_n) \cdot J(A_n) + p(AD) \cdot J(AD) + p(AD_2) \cdot J(AD_2)
$$

+
$$
p(A_nD_n) \cdot J(A_nD_n)
$$
 (3)

[where A is CF_3HgX , D is solvent, p is molar fraction and J is $J(^{199}He^{-C^{-19}F})$].

A study of the complexation of methyltin halides [11] and dibenzylmercury [4] carried out in our laboratory showed that the concentration and temperature dependence of $J(^{119}Sn-C-H)$ and $J(^{199}Hg-C-H)$ are very indicative of the behaviour of these molecules in solution. We therefore studied the concentration and temperature dependence of $J(^{199}Hg-C^{-19}F)$ for the CF₃HgX solutions mentioned above; data obtained are given in Tables 1-3. Analysis of these data shows that for solutions of CF₃HgCl or CF₃Hgl in C₂Cl₄ and for solutions of CF₃HgCl in CH₂Cl₂ or benzene an increase of temperature and of the D/A ratio (the de-

TABLE 1

CONCENTRATION AND TEMPERATURE DEPENDENCE OF $J(^{199}$ Hg-C- 19 F) CONSTANTS FOR SOLUTIONS OF CF3HgI

TABLE 2

CONCENTRATION AND TEMPERATURE DEPENDENCE OF $J(^{199}{\rm Hg}\text{---}C\text{---}^{19}{\rm F})$ CONSTANTS FOR SOLUTIONS OF CF3HgCl

89

茅

V,

150

ψĴ

48

소프

90

ģ

T

 $\mathcal{F}_{\mathcal{A}}$

ù,

TABLE 3

CONCENTRATION AND TEMPERATURE DEPENDENCE OF $J({}^{199}He-C-{}^{19}F)$ CONSTANTS FOR SOLUTIONS OF CF3HgOCOCF3

[George Website No. 1993 by Apple State State Of Apple is e f

i,

N

I po k

er i sætter.
Silver græn

crease of the CF₃HgX concentration) leads to a decrease of $J(^{199}He-C^{-19}F)$, i.e. it displaces equilibrium (2) towards the monomers. It is very interesting that for solutions of CF_3HgI or $CF_3HgOCOCF_3$ in CH_2Cl_2 or benzene the $J(^{199}Hg-C-$ ¹⁹F) constants depend on concentration but not on temperature. To explain this, we note that the half-widths of the satellites due to the mercury-fluorine coup**ling in CF,HgX molecules depend considerably onthe nature of X; the solvent, and the temperature of the sample. The values of half-widths (Hz).increase in.** the series $Cl < OCOCF₃ \ll I$, and with an increase of temperature. A similar pattern was observed earlier for CH₃ HgX molecules [12, 13] and was rationalized **in terms of anion exchange in these compounds. Consequently, association of** $CF₃HgX$ molecules decreases in the series $I \geqslant OCOCF₃ > CI$. Therefore, in the **case of the chloride it is much easier to displace equilibrium (2) towards the monomers by dilution with inert solvents than in the case of the trifluoroacetate or the iodide. As for the influence of temperature on solutions of CFa HgI** or CF₃HgOCOCF₃ in CH₂Cl₂ or benzene we may assume that these strongly as**sociated molecules exist mainly in the form of dimers (I) in the solutions under investigation.**

. .

-91

:

The dimers are weakly solvated by CH_2Cl_2 or benzene and there are three **equilibria in these solutions (4-6). An increase of the temperature of the solu-**

$$
(CF3HgX)2 = 2 CF3HgX
$$

\n
$$
(CF3HgX)2 + 2D = (CF3HgX \cdot D)2
$$
 (5)

 $CF₃HgX + 2D \rightleftharpoons CF₃HgX \cdot 2D$ (6)

tion will displace equilibrium (4) towards the monomers and at the same time equilibria (5) and (6) towards the nonsolvated dimers and monomers, respectively.

In the preceding paper, we made some conclusions about the l/l and l/2 complexes of BzzHg with various solvents 143. We found that for a tetracoordinated mercury atom the $J(^{199}Hg-C^{-1}H)$ constant is lower than for a tricoordinated one. We may assume that $J(^{199}Hg-C^{-19}F)$ for $(CF_3HgX\cdot D)_2$ is lower than for dimer. (I) and so the constancy of J_{obs} at various temperature is apparent. For **solutions of CF3HgX molecules in such solvents as DMSO, DMF, THF, acetone** and pyridine, it is important to note primarily that for CF_3HgCl the J_{obs} values **do not depend either on the concentration, or on the temperature but decrease in the series (see Table 2):**

DMSO > DMF > Acetone > THF > Pyridme (7)

This observation may be rationalized if we assume that only complexes of the type CF₃HgCl-2D exist for all concentrations and at all temperatures and that the $J(^{199}Hg-C^{-19}F)$ values observed reflect a redistribution of electron density in these complexes. In compliance with former conclusions $[5]$, these $J(^{199}Hg^-)$ **C**⁻¹⁹F) constants for complexes with various solvents reflect the electro-donor power of the solvents, and therefore the sequence (7) is the order of electron**donor ability of the solvents under investigation;** ;

The picture changes slightly on going from CF₃HgCl to CF₃HgI (Table 1) or $CF_3HgOCOCF_3$ (Table 3). For CF_3HgI the $J_{\alpha\alpha}$ values for solutions in DMSO or DMF are the same and, although we have the same order of electron-donor ability for the rest of solvents, there is a temperature dependence of J_{obs} for pyridine. This may be rationalized if we assume that equilibrium (8) is the most important in these solutions. An increase of temperature displaces equilibrium

$$
CF3HgI·D + D \rightleftharpoons CF3HgI·2D
$$

(8) to complexes of the type $CF_3HgI \cdot D$ and J_{obs} increases in accord with the conclusions derived in the preceding paper [4] on the complexes such as Bz₂Hg·D and Bz₂Hg·2D. So we conclude that CF₃HgI·D complexes are T-shaped, and the donor-acceptor bond in the complexes is of the $p-d$ -type while the relative content of s-electrons in the $F-C-Hg$ group is higher than in the $CF₃HgI$ molecule and in the $CF₃HgI \cdot 2D$ complex. The latter complex is a distorted tetragonal pyramid in which the bonds of mercury with carbon, iodine, or donor atoms of the solvents are sp^3 -hybrids.

 (8)

 (9)

The same conclusions have been derived for complexes of $CF₃HgOCOCF₃$ with pyridine (Table 3). For the electron-donor ability of solvents with respect to this organomercury molecule, we have obtained the sequence (9) in which the

$DMSO >$ Acetone $> DMF >$ THF \ge Pyridine

differences between the J_{obs} for the various systems (except for pyridine) are very small.

Experimental

The synthesis of the compounds CF_3HgCl , CF_3HgI and $CF_3HgOCOCF_3$ was carried out as described elsewhere [6]. The method of purification of the solvents used is described elsewhere [14].

¹⁹F NMR spectra were measured on a JEOL JNM 4H-100 spectrometer (94 MHz). Frequency sweep mode was employed and the ¹⁹F CF₃HgX signal was used as the internal lock. Spin-spin coupling constants were measured accurately to \pm 1.0 Hz. The temperature was adjusted by means of a JEOL T-3 probe and was measured accurately to $\pm 2^{\circ}$.

References

- 1 V.S. Petrosyan and O.A. Reutov, J. Organometal. Chem., 52 (1973) 307.
- 2 V.S. Petrosyan, S.M. Sakembayeva, V.I. Bakhmutov and O.A. Reutov, Dokl. Akad. Nauk SSSR, 209 $(1973)'1117.$
- 3 V.S. Petrosyan and V.I. Bakhmutov, VIth International Conference on Organometallic Chemistry, Amherst, Mass., USA, 1973, Abstr. of papers, No. 223.
- 4. V.S. Petrosyan, V.I. Bakhmutov and O.A. Reutov, J. Organometal. Chem, 72 (1974) 79.
- 5 V.S. Petrosyan and O.A. Reutov, Plenary Lecture at XIth European Congress on Molecular Spectroscopy, Tallin, USSR, 1973, Pure Appl. Chem, in press.
- 6 D. Seyferth, S.P. Hopper and G.S. Murphy, J. Organometal. Chem., 46 (1972) 201.
- 7. D.P. Grdenič and A.I. Kitaigorodskii, J. Phys. Chem. (Moscow), 23 (1949) 1161.
- 8 H.I. Emeleus and J.J. Lagowskii, J. Chem. Soc., (1959) 1497.
- 9 A.J. Downs, J. Inorg. Nucl. Chem., 26 (1964) 41.
- 10 H.B. Powell and J.J. Lagowskii, J. Chem. Soc. A, (1966) 1282.
- 11 V.S. Petrosyan, N.S. Yashina, V.I. Bakhmutov, A.B. Permin and O.A. Reutov. J. Organometal. Chem. 72 (1974) 71.
- 12 N.S. Ham, E.A. Jeffery, T. Mole and S.N. Stuart, Chem. Commun., (1967) 254.
- 13 D.N. Ford, P.R. Wells and P.C. Lauterbur, Chem. Commun., (1967) 616.
- -14 V.S. Petrosyan, N.S. Yashina and O.A. Reutov, J. Organometal. Chem., 52 (1973) 315.